Σε κάποιο πανεπιστήμιο των ΗΠΑ ζητήθηκε από τους φοιτητές της φυσικής να λύσουν το εξής πρόβλημα: <<Πως μπορείτε να χρησιμοποιήσετε ένα βαρόμετρο για να υπολογίσετε το
ύψος ενός ψηλού κτιρίου;>>
Η <<σωστή>> απάντηση (και θα καταλάβετε σύντομα προς τι τα εισαγωγικά), η απάντηση που ήθελε ο καθηγητής και έδωσαν όλοι οι φοιτητές πλην ενός, ήταν να μετρηθεί η πίεση του αέρα στην κορυφή και στη βάση του κτιρίου και από τη διαφορά -με τη χρήση του κατάλληλου τύπου- να βρεθεί το ύψος.
Όμως κάποιος σπουδαστής είχε μια διαφορετική ιδέα:
<<Δένω το βαρόμετρο σε ένα σκοινί και το κατεβάζω ως το δρόμο. Το μήκος του σκοινιού είναι προφανώς ίσο με το ύψος του κτιρίου.>>
Ο καθηγητής βρέθηκε σε δύσκολη θέση. Ο φοιτητής είχε δώσει σωστή απάντηση, αφού στη διατύπωση δεν αναφερόταν τίποτα για την πίεση του αέρα ή για τη μη-χρήση σκοινιών.
Ζήτησε τη βοήθεια ενός άλλου καθηγητή και συμφώνησαν ότι ο φοιτητής έπρεπε να απαντήσει ξανά στην ερώτηση, προκειμένου να δείξει ότι έχει γνώσεις φυσικής. Ο φοιτητής δεν είχε καμία αντίρρηση. Τους έδωσε πέντε καινούριες απαντήσεις:
1) Ρίχνεις το βαρόμετρο από την κορυφή του κτιρίου και χρονομετράς την πτώση. Έπειτα με τη χρήση του τύπου S=1/2at² υπολογίζεις το ύψος του κτιρίου.
2) Μια ηλιόλουστη μέρα βγάζεις το χρονόμετρο έξω και μετράς το ύψος του, το μήκος της σκιάς του και το μήκος της σκιάς του κτιρίου, και μετά, με τη χρήση απλής αναλογίας υπολογίζεις το ύψος του.
3) Παίρνεις το βαρόμετρο και αρχίζεις να ανεβαίνεις τις σκάλες.
Χρησιμοποιείς το βαρόμετρο ως μονάδα μέτρησης για να μετρήσεις το ύψος κάθε σκαλοπατιού. Πολλαπλασιάζεις τα σκαλιά με το ύψος του βαρόμετρου και έχεις το ύψος του κτιρίου.
4) Στερεώνεις το βαρόμετρο στην άκρη μιας χορδής το κουνάς σαν
εκκρεμές και καθορίζεις την τιμή του g (επιτάχυνση της βαρύτητας) στο επίπεδο του δρόμου και στην κορυφή του κτιρίου. Από τη διαφορά των δύο τιμών του g μπορείς να υπολογίσεις το ύψος του κτιρίου.
5) (το καλύτερο!) Πηγαίνεις στον επιστάτη του κτιρίου και του λες: <<Αν μου πείτε το ύψος του κτιρίου θα σας δώσω αυτό το πολύ ωραίο βαρόμετρο.>>
Ο φοιτητής πήρε άριστα, αλλά δεν γνωρίζω τι έκανε μετά στη ζωή του.
Ο τρόπος που σκέφτηκε ο φοιτητής, στη θεωρία της νοημοσύνης καλείται <<αποκλίνουσα ενόραση>>.
Τις περισσότερες φορές (και οι περισσότεροι άνθρωποι) όταν
αντιμετωπίζουμε ένα πρόβλημα ψάχνουμε μια λύση που μας παγιδεύει στην αρχική του διατύπωση.
Για παράδειγμα στην ερώτηση: <<Πως μπορούμε να αντιμετωπίσουμε την οικονομική κρίση στην Ελλάδα;>>, οι απαντήσεις μπορούν να είναι πολύ περισσότερες απ' όσες φανταζόμαστε, αρκεί πρώτα να κατανοήσουμε τη
φύση της ερώτησης (τη φύση της κρίσης μάλλον).
Όπως το βαρόμετρο σε παγιδεύει στη λύση μέσω της μέτρησης της πίεσης, έτσι και η <<οικονομική κρίση>> σε παγιδεύει στη λύση μέσω της οικονομίας.
Ένα άλλο παράδειγμα αυτοπεριορισμού της σκέψης είναι το ερώτημα που έχει να κάνει με τη χρήση ενός συνδετήρα. Είναι απλό: <<Με πόσους τρόπους μπορούμε να χρησιμοποιήσουμε ένα συνδετήρα;>>
Σε αυτό το ερώτημα οι περισσότεροι άνθρωποι βρίσκουν πέντε έως είκοσι τρόπους.
Κάποιοι όμως (ειδικά τα παιδιά) μπορούν να βρουν έως και χίλιους
πεντακόσιους τρόπους, μπορεί και περισσότερους.
Για παράδειγμα η απάντηση μπορεί να ξεκινήσει ως εξής: <<Ο συνδετήρας είναι φτιαγμένος από φελιζόλ και έχει ύψος 800 μέτρα...>>
Αν ξανακοιτάξετε το πρόβλημα θα δείτε ότι πουθενά δεν αναφέρεται ότι ο συνδετήρας είναι ο οικείος σε όλους συνδετήρας γραφείου. Ούτε το μέγεθος του αναφέρεται ούτε το υλικό κατασκευής (ένας χρυσός συνδετήρας φοριέται και ως κόσμημα, ένας συνδετήρας από καθαρό ουράνιο ως όπλο μαζικής καταστροφής).
Όταν, μάλιστα, έγινε μια σχετική έρευνα σε σχολεία βγήκαν τα εξής
πορίσματα: Τα παιδιά ηλικίας 5-8 μπορούσαν να δώσουν απεριόριστες απαντήσεις. Τα ίδια παιδιά, μετά από λίγα χρόνια εκπαίδευσης, έδιναν πολύ λιγότερες από τις μισές. Και ως ενήλικες είχαν τις συνηθισμένες 5-10 λύσεις.
Αυτό δεν μας προκαλεί εντύπωση, αφού -όπως είχε πει κάποιος συγγραφέας του οποίου το όνομα δε θυμάμαι: <<Εκπαίδευση είναι ο τρόπος να δημιουργείς έναν ηλίθιο ενήλικα από ένα πανέξυπνο παιδί>>.
Συμπερασματικά: Όλα τα προβλήματα μπορούν να λυθούν με πολύ
περισσότερους τρόπους από αυτούς που θεωρούμε ως τους μόνους δυνατούς, αρκεί να επανεξετάσουμε το ερώτημα και να σκεφτούμε κάπως πιο... ελεύθερα.
Μήπως, λοιπόν, να αναθέταμε τη διακυβέρνηση του κόσμου στα παιδιά;
Η φαντασία στην εξουσία.
(Το -αληθές- περιστατικό με το βαρόμετρο το βρήκα στο βιβλίο του David Perkins, <<Το φαινόμενο Εύρηκα>>, εκδόσεις Λιβάνη).
ύψος ενός ψηλού κτιρίου;>>
Η <<σωστή>> απάντηση (και θα καταλάβετε σύντομα προς τι τα εισαγωγικά), η απάντηση που ήθελε ο καθηγητής και έδωσαν όλοι οι φοιτητές πλην ενός, ήταν να μετρηθεί η πίεση του αέρα στην κορυφή και στη βάση του κτιρίου και από τη διαφορά -με τη χρήση του κατάλληλου τύπου- να βρεθεί το ύψος.
Όμως κάποιος σπουδαστής είχε μια διαφορετική ιδέα:
<<Δένω το βαρόμετρο σε ένα σκοινί και το κατεβάζω ως το δρόμο. Το μήκος του σκοινιού είναι προφανώς ίσο με το ύψος του κτιρίου.>>
Ο καθηγητής βρέθηκε σε δύσκολη θέση. Ο φοιτητής είχε δώσει σωστή απάντηση, αφού στη διατύπωση δεν αναφερόταν τίποτα για την πίεση του αέρα ή για τη μη-χρήση σκοινιών.
Ζήτησε τη βοήθεια ενός άλλου καθηγητή και συμφώνησαν ότι ο φοιτητής έπρεπε να απαντήσει ξανά στην ερώτηση, προκειμένου να δείξει ότι έχει γνώσεις φυσικής. Ο φοιτητής δεν είχε καμία αντίρρηση. Τους έδωσε πέντε καινούριες απαντήσεις:
1) Ρίχνεις το βαρόμετρο από την κορυφή του κτιρίου και χρονομετράς την πτώση. Έπειτα με τη χρήση του τύπου S=1/2at² υπολογίζεις το ύψος του κτιρίου.
2) Μια ηλιόλουστη μέρα βγάζεις το χρονόμετρο έξω και μετράς το ύψος του, το μήκος της σκιάς του και το μήκος της σκιάς του κτιρίου, και μετά, με τη χρήση απλής αναλογίας υπολογίζεις το ύψος του.
3) Παίρνεις το βαρόμετρο και αρχίζεις να ανεβαίνεις τις σκάλες.
Χρησιμοποιείς το βαρόμετρο ως μονάδα μέτρησης για να μετρήσεις το ύψος κάθε σκαλοπατιού. Πολλαπλασιάζεις τα σκαλιά με το ύψος του βαρόμετρου και έχεις το ύψος του κτιρίου.
4) Στερεώνεις το βαρόμετρο στην άκρη μιας χορδής το κουνάς σαν
εκκρεμές και καθορίζεις την τιμή του g (επιτάχυνση της βαρύτητας) στο επίπεδο του δρόμου και στην κορυφή του κτιρίου. Από τη διαφορά των δύο τιμών του g μπορείς να υπολογίσεις το ύψος του κτιρίου.
5) (το καλύτερο!) Πηγαίνεις στον επιστάτη του κτιρίου και του λες: <<Αν μου πείτε το ύψος του κτιρίου θα σας δώσω αυτό το πολύ ωραίο βαρόμετρο.>>
Ο φοιτητής πήρε άριστα, αλλά δεν γνωρίζω τι έκανε μετά στη ζωή του.
Ο τρόπος που σκέφτηκε ο φοιτητής, στη θεωρία της νοημοσύνης καλείται <<αποκλίνουσα ενόραση>>.
Τις περισσότερες φορές (και οι περισσότεροι άνθρωποι) όταν
αντιμετωπίζουμε ένα πρόβλημα ψάχνουμε μια λύση που μας παγιδεύει στην αρχική του διατύπωση.
Για παράδειγμα στην ερώτηση: <<Πως μπορούμε να αντιμετωπίσουμε την οικονομική κρίση στην Ελλάδα;>>, οι απαντήσεις μπορούν να είναι πολύ περισσότερες απ' όσες φανταζόμαστε, αρκεί πρώτα να κατανοήσουμε τη
φύση της ερώτησης (τη φύση της κρίσης μάλλον).
Όπως το βαρόμετρο σε παγιδεύει στη λύση μέσω της μέτρησης της πίεσης, έτσι και η <<οικονομική κρίση>> σε παγιδεύει στη λύση μέσω της οικονομίας.
Ένα άλλο παράδειγμα αυτοπεριορισμού της σκέψης είναι το ερώτημα που έχει να κάνει με τη χρήση ενός συνδετήρα. Είναι απλό: <<Με πόσους τρόπους μπορούμε να χρησιμοποιήσουμε ένα συνδετήρα;>>
Σε αυτό το ερώτημα οι περισσότεροι άνθρωποι βρίσκουν πέντε έως είκοσι τρόπους.
Κάποιοι όμως (ειδικά τα παιδιά) μπορούν να βρουν έως και χίλιους
πεντακόσιους τρόπους, μπορεί και περισσότερους.
Για παράδειγμα η απάντηση μπορεί να ξεκινήσει ως εξής: <<Ο συνδετήρας είναι φτιαγμένος από φελιζόλ και έχει ύψος 800 μέτρα...>>
Αν ξανακοιτάξετε το πρόβλημα θα δείτε ότι πουθενά δεν αναφέρεται ότι ο συνδετήρας είναι ο οικείος σε όλους συνδετήρας γραφείου. Ούτε το μέγεθος του αναφέρεται ούτε το υλικό κατασκευής (ένας χρυσός συνδετήρας φοριέται και ως κόσμημα, ένας συνδετήρας από καθαρό ουράνιο ως όπλο μαζικής καταστροφής).
Όταν, μάλιστα, έγινε μια σχετική έρευνα σε σχολεία βγήκαν τα εξής
πορίσματα: Τα παιδιά ηλικίας 5-8 μπορούσαν να δώσουν απεριόριστες απαντήσεις. Τα ίδια παιδιά, μετά από λίγα χρόνια εκπαίδευσης, έδιναν πολύ λιγότερες από τις μισές. Και ως ενήλικες είχαν τις συνηθισμένες 5-10 λύσεις.
Αυτό δεν μας προκαλεί εντύπωση, αφού -όπως είχε πει κάποιος συγγραφέας του οποίου το όνομα δε θυμάμαι: <<Εκπαίδευση είναι ο τρόπος να δημιουργείς έναν ηλίθιο ενήλικα από ένα πανέξυπνο παιδί>>.
Συμπερασματικά: Όλα τα προβλήματα μπορούν να λυθούν με πολύ
περισσότερους τρόπους από αυτούς που θεωρούμε ως τους μόνους δυνατούς, αρκεί να επανεξετάσουμε το ερώτημα και να σκεφτούμε κάπως πιο... ελεύθερα.
Μήπως, λοιπόν, να αναθέταμε τη διακυβέρνηση του κόσμου στα παιδιά;
Η φαντασία στην εξουσία.
(Το -αληθές- περιστατικό με το βαρόμετρο το βρήκα στο βιβλίο του David Perkins, <<Το φαινόμενο Εύρηκα>>, εκδόσεις Λιβάνη).
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου